Efficient Computation of Recursive Principal Component Analysis for Structured Input
نویسنده
چکیده
Recently, a successful extension of Principal Component Analysis for structured input, such as sequences, trees, and graphs, has been proposed. This allows the embedding of discrete structures into vectorial spaces, where all the classical pattern recognition and machine learning methods can be applied. The proposed approach is based on eigenanalysis of extended vectorial representations of the input structures and substructures. One problem with the approach is that eigenanalysis can be computationally quite demanding when considering large datasets of structured objects. In this paper we propose a general approach for reducing the computational burden. Experimental results show a significant speed-up of the computation.
منابع مشابه
Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملRecursive Principal Component Analysis of Graphs
Treatment of general structured information by neural networks is an emerging research topic. Here we show how representations for graphs preserving all the information can be devised by Recursive Principal Components Analysis learning. These representations are derived from eigenanalysis of extended vectorial representations of the input graphs. Experimental results performed on a set of chemi...
متن کاملExact Solutions for Recursive Principal Components Analysis of Sequences and Trees
We show how a family of exact solutions to the Recursive Principal Components Analysis learning problem can be computed for sequences and tree structured inputs. These solutions are derived from eigenanalysis of extended vectorial representations of the input structures and substructures. Experimental results performed on sequences and trees generated by a context-free grammar show the effectiv...
متن کاملAIOSC: Analytical Integer Word-length Optimization based on System Characteristics for Recursive Fixed-point LTI Systems
The integer word-length optimization known as range analysis (RA) of the fixed-point designs is a challenging problem in high level synthesis and optimization of linear-time-invariant (LTI) systems. The analysis has significant effects on the resource usage, accuracy and efficiency of the final implementation, as well as the optimization time. Conventional methods in recursive LTI systems suffe...
متن کاملOutlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis
Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...
متن کامل